

CASE REPORT

Interference of Hb J-Sardegna on HbA_{1c} Quantification in a Diabetic Patient

Li Liang¹, Lihong Zheng², Yongguang Du³, Liang Liang², Youqiong Li²

¹Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China

²Center for Medical Genetics and Prenatal Diagnosis, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China

³Department of Nuclear Medicine, The First People's Hospital of Nanning, Nanning, Guangxi, China

SUMMARY

Background: Hb J-Sardegna represents a rare hemoglobin (Hb) variant with no previously documented interference in HbA_{1c} quantification. In this study, we report the first case of Hb J-Sardegna incidentally identified in a diabetic patient, demonstrating significant discordance between measured blood glucose levels and disproportionately elevated HbA_{1c} values.

Methods: The patient presented to our institution for follow-up evaluation of thyroid nodules, during which diabetes screening was clinically indicated. Plasma glucose levels were measured using biochemical analyzers, while HbA_{1c} quantification was performed by high-performance liquid chromatography (HPLC). Hb fractions analysis was conducted by capillary electrophoresis (CE), with subsequent confirmation of the suspected variant through Sanger sequencing.

Results: Laboratory investigations revealed markedly elevated glucose levels (fasting: 8.79 mmol/L; 2-hour post-prandial: 18.09 mmol/L), while HPLC analysis demonstrated a discordantly elevated HbA_{1c} of 32.23%. CE identified an abnormal Hb fraction (Hb J peak: 31.8%), with subsequent Sanger sequencing confirming the presence of Hb J-Sardegna (*HBA2*:c.151C>G) and the intronic variant IVS-II-89T>C (*HBA1*:c.301-61T>C). Notably, all hematological parameters remained within normal ranges.

Conclusions: This study reports for the first time that Hb J-Sardegna can interfere with HbA_{1c} quantification, highlighting the importance for laboratory technicians to carefully interpret chromatographic profiles when analyzing HbA_{1c} results.

(Clin. Lab. 2026;72:xx-xx. DOI: 10.7754/Clin.Lab.2025.250556)

Correspondence:

Prof. Youqiong Li
Center for Medical Genetics and Prenatal Diagnosis
People's Hospital of Guangxi Zhuang Autonomous Region
No. 6 Taoyuan Road
Nanning, Guangxi, 530021
China
Email: liyouqiong327@163.com

KEYWORDS

Hb J-Sardegna, *HBA2*:c.151C>G, HbA_{1c}, *HBA1*:c.301-61T>C, variant

INTRODUCTION

Glycated hemoglobin (HbA_{1c}) serves as a pivotal biomarker in diabetes management [1]. First identified in 1968 as an abnormal Hb component in diabetic patients, HbA_{1c} was subsequently characterized as the non-enzymatic glycation product formed between glucose and the N-terminal valine of the Hb β -chain [2]. After decades of investigation, HbA_{1c} has been established as the gold standard for evaluating glycemic control, uniquely reflecting average blood glucose levels over

the preceding 2 - 3 months. Following WHO's 2011 diagnostic incorporation ($\geq 6.5\%$), China implemented HbA_{1c} as a definitive criterion in 2019 [3].

Notably, despite advantages including fasting-independent nature and low biological variability, HbA_{1c} measurement carries clinical limitations. Biological confounders encompass erythrocyte lifespan alterations (e.g., shortened cycle in hemolytic anemia) and bone marrow dysfunction (e.g., impaired erythropoiesis in iron-deficiency anemia) [4]. Methodological interference arises from Hb variants (e.g., HbS, HbE), while metabolic disorders like uremia may alter erythrocyte microenvironment and glycation kinetics [5,6]. These complexities necessitate multidimensional assessment using serum fructosamine and continuous glucose monitoring, particularly in pregnancy or hemoglobinopathies.

Here, we present a rare variant Hb J-Sardegna incidentally diagnosed in a diabetic patient. Discrepancies between HPLC-measured HbA_{1c} and blood glucose levels prompted suspicion of hemoglobinopathy, confirmed through Hb electrophoresis. To our knowledge, this represents the first documented case of Hb J-Sardegna interfering with HbA_{1c} quantification.

CASE REPORT

A 53-year-old Chinese male with a history of thyroid nodules presented to our institution for routine follow-up. The patient denied a personal or familial history of diabetes mellitus or hemoglobinopathies. As part of age-appropriate metabolic screening, clinicians ordered fasting plasma glucose (FPG) and HbA_{1c} measurements alongside complete blood count (CBC), hepatic/renal function panels, and lipid profiling.

Biochemical analysis revealed elevated glucose levels: FPG 8.79 mmol/L (reference: 3.9 - 6.1 mmol/L) and 2-hour postprandial glucose 18.09 mmol/L (reference < 7.8 mmol/L) (AU680; Beckman Coulter, Kraemer Boulevard, Brea, CA, USA). However, HPLC-based HbA_{1c} quantification demonstrated a discordantly extreme value of $> 32.23\%$ (reference $\leq 6.5\%$), suggesting potential interference from Hb variants (D100; Bio-Rad, Hercules, CA, USA). To investigate this possibility, Hb fractions were performed by capillary electrophoresis (CE) (CapillaryS2 Flex Piercing; Sebia, Lisses, Paris, France). Analysis of Hb fractions identified abnormal migration patterns: HbA (65.8%), HbF (0.7%), HbA2 (1.7%), with two distinct aberrant peaks corresponding to HbJ (31.8%) and HbD (0.7%). Based on the electrophoretic characteristics of α -globin chain variants, which produce distinct migration bands corresponding to their α -chain composition, these bands were attributed to α -globin chain variants.

To molecularly confirm the suspected Hb variants, bidirectional Sanger sequencing of the *HBA1* and *HBA2* genes was performed [7]. Sequencing analysis identified a heterozygous missense mutation (CAC>GAC) at

codon 50 of the *HBA2* gene (*HBA2*:c.151C>G, p.His50 Asp), corresponding to the known Hb J-Sardegna variant. Furthermore, a previously unreported splice region variant was detected in intron 2 of the *HBA1* gene (*HBA1*:c.301-61T>C, IVS-II-89T>C). Database interrogation (ClinVar, HbVar) and literature review confirmed this intronic mutation represents a novel mutation with no prior clinical reports.

Additional laboratory investigations revealed normal hepatic and renal function profiles. Lipid panel analysis demonstrated isolated hypertriglyceridemia (2.94 mmol/L; reference range: < 1.7 mmol/L). CBC parameters showed Hb at the upper reference limit (175 g/L; normal range: 130 - 175 g/L), with normocytic and normochromic erythrocyte indices: mean corpuscular volume (MCV) 89.0 fL (reference: 82 - 100 fL) and mean corpuscular Hb (MCH) 30.1 pg (reference: 27 - 34 pg).

DISCUSSION

Hb J-Sardegna is a Hb variant caused by a missense mutation in the *HBA* gene (α 50[CE8]His→Asp), resulting in the substitution of histidine by aspartic acid at position 50 of the α -globin chain [8]. This variant, first found in 1969, has different geographical distribution patterns, with a prevalence of 0.25% in northern Sardinia but an exceedingly low prevalence in the Chinese population [9,10]. This clinically benign hemoglobinopathy exhibits unique oxygen-binding characteristics. Unlike normal adult Hb (HbA), Hb J-Sardegna demonstrates elevated oxygen affinity specifically under conditions of physiological 2,3-diphosphoglycerate (2,3-DPG) concentration, a critical allosteric regulator of Hb function [11].

This case represents the first documented instance of Hb J-Sardegna interfering with HPLC-based HbA_{1c} quantification, resulting in discordance between glucose levels and HbA_{1c} values. While previous reports have described Hb J-Sardegna in non-diabetic populations, its coexistence with diabetes mellitus and subsequent impact on glycemic monitoring remained unexplored. Mechanistically, hemoglobinopathies influence HbA_{1c} measurement through three principal pathways: 1) altered Hb glycosylation kinetics, 2) reduced erythrocyte lifespan, and 3) chromatographic co-elution artifacts [12]. In this case, the co-elution of Hb J-Sardegna with HbA_{1c} derivatives led to significant overestimation by HPLC, thereby exposing critical limitations in HbA_{1c}'s reliability as a diabetes biomarker under such pathophysiological conditions. Regrettably, the lack of immunoassay-specific reagents in our laboratory precluded evaluation of potential interference by Hb J-Sardegna with immunoassay-based HbA_{1c} measurements.

Hb J-Sardegna, a benign genetic variant that does not cause clinical disease, may lead to measurement errors in HbA_{1c} values. Similar Hb variants interfering with HbA_{1c} quantification are occasionally encountered in clinical practice, particularly in regions with a high

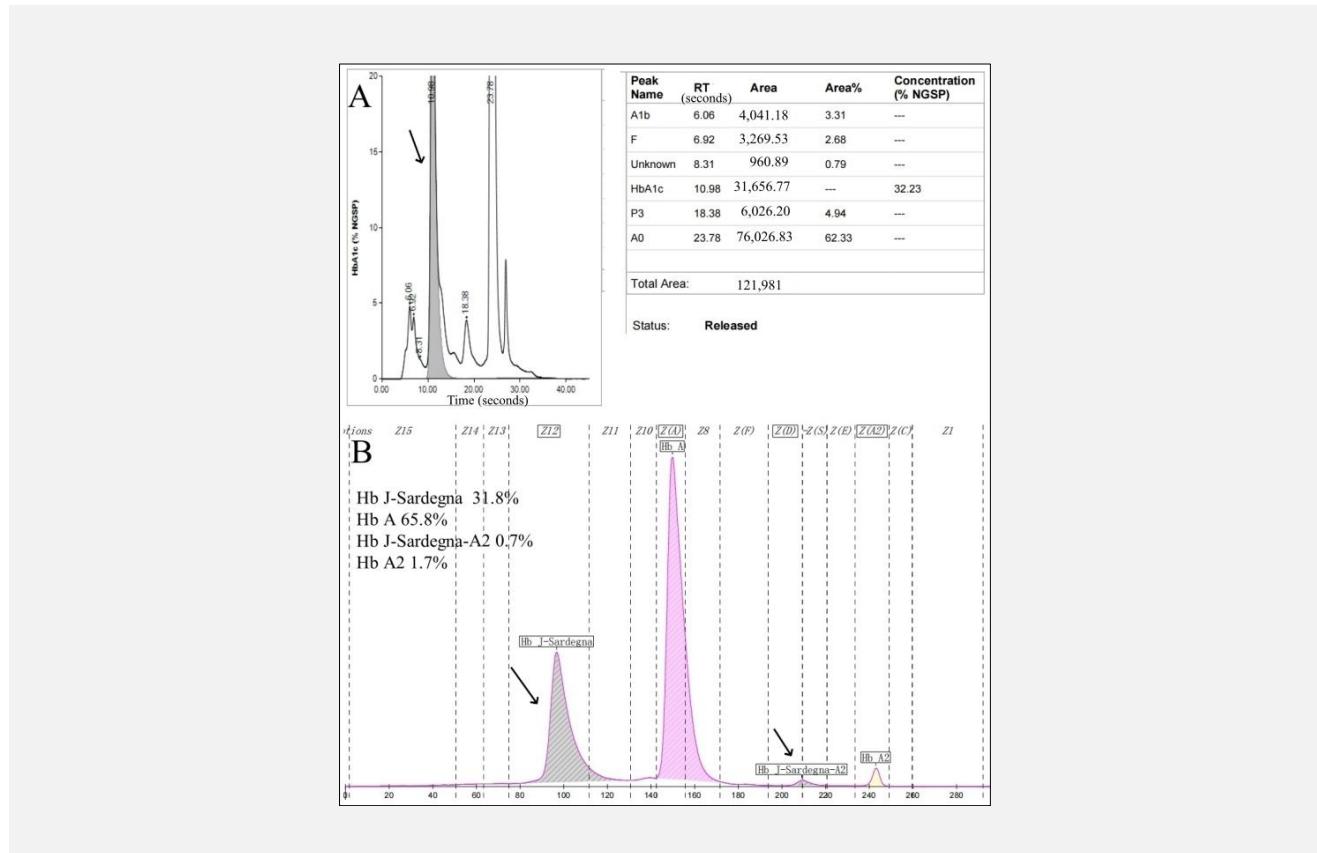


Figure 1. HbA_{1c} measurement with HPLC (A) and Hb analysis by CE (B) in this patient.

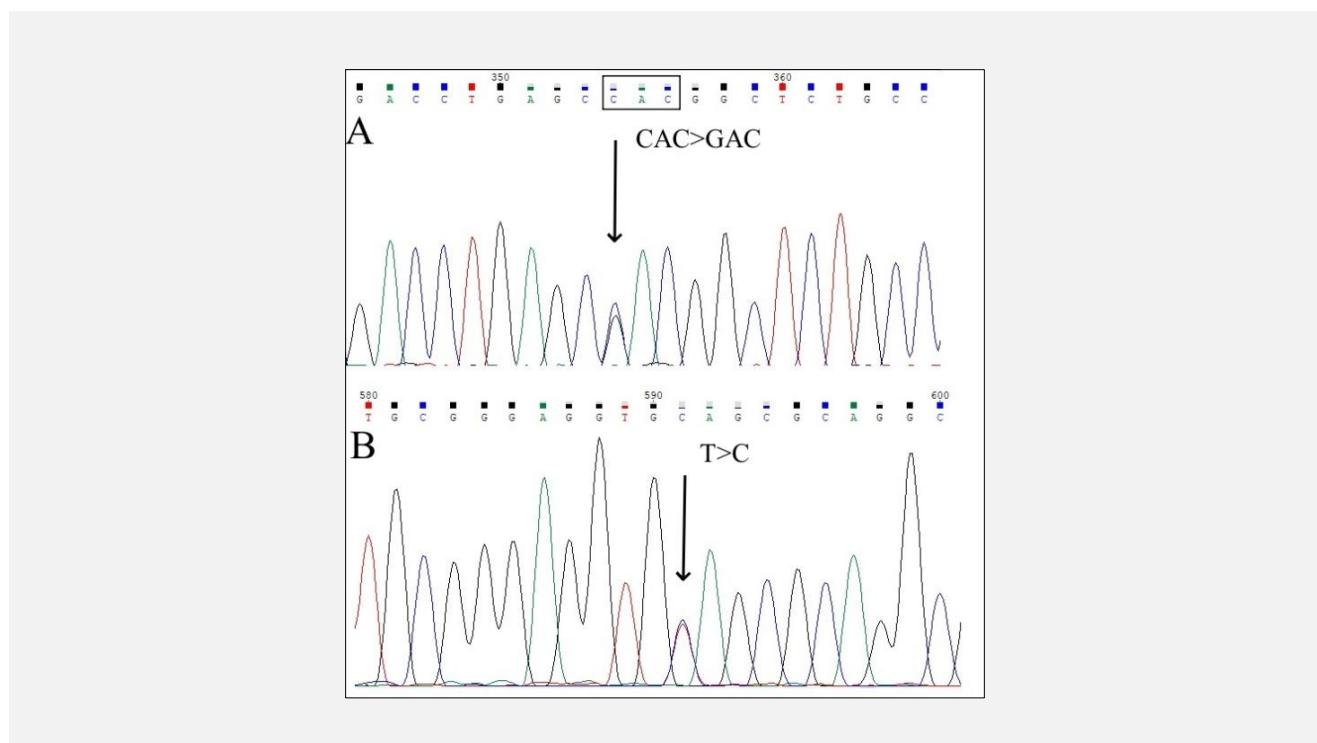


Figure 2. Sanger sequencing of this patient identified two genetic alterations: a missense mutation at codon 50 of the *HBA1* gene (CAC>GAC, p.His50Asp) (A) and a splice-region variant in intron 2 of the *HBA2* gene (*HBA2*:c.301-61T>C) (B).

prevalence of hemoglobinopathies [6,7]. Clinicians should be aware of the possibility of Hb variants when encountering abnormal HbA_{1c} values (e.g., below the normal range or inconsistent with clinical observations). Additionally, the selection of inappropriate detection methods may result in falsely elevated or reduced HbA_{1c} values due to Hb variants, leading to misdiagnosis or a false impression of well-controlled diabetes. Notably, a novel mutation was identified in intron 2 of the *HBA1* gene (*HBA1:c.301-61T>C, IVS-II-89T>C*). To our knowledge, this variant represents a previously unreported mutation with no documented phenotypic associations. Although localized to a splice region where sequence variations may alter RNA processing, the absence of hematological abnormalities - evidenced by normocytic erythrocyte indices (MCV 89.0 fL, MCH 30.1 pg) - suggests this likely represents a benign polymorphism.

This study highlights the necessity for clinical laboratories in hemoglobinopathy-endemic regions to recognize the inherent limitations of HbA_{1c} testing. Technologists should systematically interrogate chromatographic profiles to verify analytical validity, particularly when aberrant patterns emerge. Furthermore, in alignment with the Chinese expert consensus on HbA_{1c} testing, we advocate implementing routine Hb fractionation analysis prior to HbA_{1c} quantification in high-prevalence populations to preempt Hb variant-related interference. For patients with confirmed Hb variants, glycemic monitoring should be supplemented with non-Hb-dependent biomarkers - such as glycated albumin, fructosamine, or continuous glucose monitoring (CGM) - to ensure accurate longitudinal assessment of glycemic control.

CONCLUSION

This case underscores the potential for Hb variants to confound HbA_{1c} measurements, thereby compromising their diagnostic reliability in diabetes management. Clinicians should maintain a high index of suspicion for hemoglobinopathies when encountering discordance between HbA_{1c} values and clinical presentation. In such scenarios, alternative glycemic monitoring strategies - including glycated albumin, fasting plasma glucose, or oral glucose tolerance testing - may provide more accurate metabolic assessment and therapeutic guidance.

Source of Funds:

This work is supported by the Health Department Research Fund of Guangxi (Z-A20240075).

Declaration of Interest:

The authors report no conflicts of interest relevant to this article.

References:

1. Lenters-Westra E, Fokkert M, Kilpatrick ES, et al. Managing discordance between HbA_{1c} and glucose management indicator. *Diabet Med* 2025;42(6):e70023. (PMID: 40123266)
2. Ang SH, Thevarajah M, Alias Y, Khor SM. Current aspects in hemoglobin A_{1c} detection: a review. *Clin Chim Acta* 2015;439: 202-11. (PMID: 25451954)
3. Albairmani RA, Basheer BM, Macky MM, et al. Management of Diabetes in Pregnancy: A Review of Clinical Guidelines and Practices. *Cureus* 2025;17(2):e79334. (PMID: 40125239)
4. Mitchai M, Suwansaksri N, Seanseeha S, et al. Misleading HbA_{1c} Measurement in Diabetic Patients with Hemoglobin Variants. *Med Sci (Basel)* 2021;9(2):43. (PMID: 34200315)
5. Rohlfing C, Hanson S, Estey MP, Bordeleau P, Little RR. Evaluation of interference from hemoglobin C, D, E and S traits on measurements of hemoglobin A_{1c} by fifteen methods. *Clin Chim Acta* 2021;522:31-5. (PMID: 34352282)
6. Ye LH, Huang YY, Zheng LH, Shen X, Liang L, Li Y. False HbA_{1c} Value due to a Rare Variant of Hemoglobin J-Cubujuqui. *Clin Lab* 2023;69(10):2141-5. (PMID: 37844042)
7. Li YQ, Tian M, Qin T, Wan L. Capillary Electrophoresis Resolves Inconclusive HPLC Analysis for Hemoglobin Variants: a Study of Two Cases. *Clin Lab* 2018;64(7):1305-9. (PMID: 30146834)
8. Manca L, Masala B. Identification of Hb J-Sardegna [alpha 50(CE8)His-Asp] by HPLC and its incidence in northern Sardinia. *Hemoglobin* 1989;13(1):33-44. (PMID: 2703364)
9. Tangheroni W, Zorcolo G, Gallo E, Lehmann H. A new haemoglobin: Hb J Sardegna (alpha50 histidine-aspartic acid). *Helv Paediatr Acta* 1969;24(2):174-82. (PMID: 5801827)
10. Paleari R, Paglietti E, Mosca A, et al. Posttranslational deamidation of proteins: the case of hemoglobin J Sardegna [alpha50(CD8)His-->Asn-->Asp]. *Clin Chem* 1999;45(1):21-8. (PMID: 9895333)
11. Corda M, De Rosa MC, Pellegrini MG, et al. Adult and fetal haemoglobin J-Sardegna [alpha50(CE8)His-->Asp]: functional and molecular modelling studies. *Biochem J* 2000;346 Pt 1(Pt 1):193-9. (PMID: 10657257)
12. Mackley MP, Morgenthau A, Elnenaei M, MacKenzie H. A Rare Hemoglobin Variant (β 51Pro → His) Causing Misleading Measurements of Hemoglobin A_{1c}. *J Endocr Soc* 2022;6(4):bvab186. (PMID: 35237735)