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SUMMARY

Background: This study aimed to characterize the etiological profile of nosocomial infections in cervical cancer pa-
tients and to develop a machine learning-based prediction model for infections caused by the predominant patho-
gen, Escherichia coli, to support clinical decision-making in anti-infective therapy and risk stratification.

Methods: We conducted a retrospective analysis of clinical data from 118 cervical cancer patients to evaluate the
distribution and antimicrobial resistance patterns of infectious pathogens. Predictive factors for Escherichia coli
infection were identified, and a corresponding prediction model was developed. All the statistical analyses were
carried out via R software (version 4.3.2) and iResearch (version 2.9.2).

Results: A total of 151 pathogenic isolates were obtained, with the highest prevalence detected in mid-stream urine
samples (69.54%, 105/151). Gram-negative bacteria constituted 76.82% (116/151) of the isolates, among which
Escherichia coli was the most frequently identified species (50.33%, 76/151). Antimicrobial susceptibility testing
revealed resistance rates exceeding 55% to ceftriaxone, ciprofloxacin, trimethoprim-sulfamethoxazole, and levo-
floxacin among Escherichia coli isolates, whereas high susceptibility was retained to carbapenems, piperacillin-ta-
zobactam, and amikacin. Logistic regression analysis revealed that Escherichia coli infection was positively associ-
ated with earlier clinical stage, absence of anemia, and mid-stream urine sample type. Within the urinary infec-
tion subgroup, positive urinary nitrite was also correlated with increased infection risk. Feature selection utilizing
multiple approaches informed the construction of the prediction model.

Logistic regression and svm_cross_validation exhibited stable performance in the full sample analysis. Restricting
the analysis to mid-stream urine samples substantially improved model performance. The svm-based model
yielded AUC values of 0.81 and 0.89 in the training and test sets, respectively, and the logistic model achieved
AUC:s of 0.87 and 0.90, respectively.

Conclusions: Nosocomial infections in cervical cancer patients are caused primarily by gram-negative bacilli with-
in the urinary tract, with Escherichia coli representing the most prevalent pathogen. The machine learning model,
which incorporates readily available clinical parameters such as disease stage, anemia status, and urinalysis re-
sults, demonstrated robust discriminatory performance in predicting Escherichia coli infection in mid-stream
urine samples. This tool offers a practical approach for risk identification and guides a more targeted empiric
therapy, holding promise for improving treatment outcomes in patients with cervical cancer.
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INTRODUCTION

Cervical cancer represents one of the most prevalent
malignancies affecting women globally [1,2]. Treat-
ments such as surgery, radiotherapy, and chemotherapy
frequently result in immunosuppression, significantly
increasing the risk of nosocomial infections among
these patients [1,3]. These infections can lead to pro-
longed hospitalization, elevated healthcare costs, and
potentially life-threatening complications including sep-
sis, thereby adversely affecting clinical outcomes. The
growing prevalence of antimicrobial resistance driven in
part by inappropriate antibiotic use has further compli-
cated treatment strategies, with notably high resistance
rates to fluoroquinolones and third-generation cephalo-
sporins increasingly reported [4,5].

Current detection approaches for infections in cervical
cancer patients rely heavily on microbial culture and
antibiotic susceptibility testing. However, these meth-
ods are time intensive and offer limited utility for early
clinical intervention [6,7]. Although conventional bio-
markers such as procalcitonin and C-reactive protein are
widely used, they lack specificity for pathogenic organ-
isms, reducing their diagnostic precision. Furthermore,
traditional statistical models often prove inadequate
when applied to complex, multidimensional clinical
data.

Machine learning algorithms have emerged as powerful
tools in predictive healthcare, demonstrating consider-
able success in the early detection of conditions such as
sepsis and ventilator-associated pneumonia [8,9]. De-
spite these advances, the application of such techniques
to predict infections specifically in cervical cancer pa-
tients remains limited. Consequently, a thorough in-
vestigation of pathogen distribution and resistance pat-

terns, complemented by the development of machine
learning models capable of integrating diverse clinical
variables, is essential to facilitate early diagnosis and
promote rational antimicrobial use, ultimately improv-
ing patient care and survival.

In this study, we retrospectively analyzed clinical and
microbiological data from cervical cancer patients to
delineate the profiles and resistance characteristics of
pathogenic infections. Using machine learning algo-
rithms, including logistic regression and support vector
machine (svm), we developed a predictive model for
Escherichia coli (E. coli) infections that exhibited
strong discriminatory power, with the logistic regres-
sion model achieving an area under the receiver operat-
ing characteristic curve (AUC) of 0.90 in the test set. By
innovatively leveraging machine learning for the predic-
tion of E. coli infections among culture-positive cases,
this work establishes a framework for personalized in-
fection management and targeted antibiotic therapy,
with the potential to enhance treatment efficacy.

MATERIALS AND METHODS

Study setting and population

This retrospective cohort study was conducted at the
West District of the First Affiliated Hospital of Univer-
sity of Science and Technology of China (Anhui Pro-
vincial Cancer Hospital), the only tertiary-care special-
ized cancer hospital in Anhui Province. The facility
maintains 1,696 inpatient beds and 29 clinical subspe-
cialties. Its gynecologic oncology unit is a provin-
cial-level key specialty, serving a broad regional popu-
lation, which ensures sufficient patient enrollment. A
structured infection control program is implemented
hospital-wide, with prospective audits and feedback
from clinicians and pharmacists providing timely in-
sight into local pathogen distribution and antimicrobial
resistance patterns, thereby promoting rational antimi-
crobial use.

This study included consecutive 118 hospitalized cervi-
cal cancer patients with positive microbial cultures. For
urine cultures, a urinary tract infection was diagnosed in
cases with colony counts meeting the threshold of > 10°
CFU/mL for gram-negative bacilli, > 10* CFU/mL for
gram-positive bacteria, or > 10* CFU/mL for fungi from
a mid-stream urine specimen. In the presence of signifi-
cant pyuria (> 1 + WBC on qualitative urinalysis), a
bacterial colony count exceeding 103 CFU/mL was also
considered diagnostic for a urinary tract infection. Poly-
microbial cultures (growth of > 3 potential pathogens)
were excluded from the predictive modeling analysis to
ensure a clear outcome label.

Clinical data collection

Demographic and clinical variables, including age, dis-
ease stage, geographic region, and standardized labora-
tory assessments, were retrospectively collected from
medical records. These included the biochemical pa-
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rameters glucose (GLU), Lpa, ALT and AST for hepatic
function, creatinine (CREA) and blood urea nitrogen
(BUN) for renal function, the tumor biomarker squa-
mous cell carcinoma antigen (SCC), complete blood
count indices - WBC, lymphocyte (L) and neutrophil
(N) counts and percentages for infection; RBC and he-
moglobin (Hb) for anemia; platelet (PLT) count for co-
agulation, as well as the qualitative urinalysis measures:
occult blood (U _OB), protein (U PRO), white blood
cell (U_WBCI1) and nitrite (U_nitrite), and the quantita-
tive parameters: white blood cell (U_WBC). A rigorous
data integrity protocol was implemented, featuring dual
independent extraction and entry followed by cross-ver-
ification by a third investigator.

Pathogen isolation, culture, and antimicrobial sus-
ceptibility

The test specimen types included deep sputum, fresh
whole blood, mid-stream urine, purulent secretions,
vaginal secretions, drainage fluid, and stool. Isolation
and culture procedures were performed in accordance
with the National Clinical Laboratory Operating Proce-
dures (4th Edition). Bacterial identification and antimi-
crobial susceptibility testing were conducted via the
VITEK-2 compact automated microbial analysis system
(bioMérieux, France). The minimum inhibitory concen-
tration (MIC) dilution method was employed for sus-
ceptibility testing, with results interpreted based on the
Clinical and Laboratory Standards Institute 2020 guide-
lines (CLSI M100-30). The quality control strains in-
cluded E. coli (ATCC 25922) and Staphylococcus aure-
us (ATCC 25923).

Construction of infection prediction models

For analyses incorporating all specimen types, predictor
variables, including specimen type, disease stage, and
complete blood count parameters (WBC, RBC, and Hb)
were selected based on logistic univariate regression re-
sults (p < 0.1) and decision tree outcomes. For analyses
restricted to mid-stream urine specimens, variables were
selected via logistic univariate regression (p < 0.1), de-
cision tree, and least absolute shrinkage and selection
operator (LASSO), encompassing disease stage, com-
plete blood count parameters (WBC, RBC, Hb), and
urinalysis indicators (WBC and nitrite). All above ana-
lyses were performed via R software (version 4.3.2).
We employed the forest plot package for regression
analysis and the glmnet package for feature selection via
LASSO regression. Model performance was evaluated
by generating receiver ROC curves using the pROC
package. All data visualizations were created with
ggplot2. The following machine learning algorithms
analyzed by iResearch (version 2.9.2) were applied to
evaluate their utility in infection prediction: Naive
Bayes classifier, K-nearest neighbors (KNN) classifier,
Logistic regression classifier, Random forest classifier,
Decision tree classifier, Artificial neural network
(ANN) classifier, Support vector machine with cross-
validation (svm_cross validation), Gradient boosting
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classifier (ensemble learning), LightGBM, Adaptive
boosting (AdaBoost) classifier and XGBoost classifier.

Statistical analysis

Data processing and statistical analyses were conducted
using R version 4.3.2 and iResearch (version 2.9.2).
Continuous variables are expressed as the mean + stan-
dard deviation (x £ s), and categorical variables are ex-
pressed as frequencies (%). Univariate logistic regres-
sion was used to assess associations between clinical
characteristics/laboratory indicators and pathogenic in-
fections. Variables with p < 0.1 were included in model
construction, and p < 0.05 was considered statistically
significant.

RESULTS

Clinical characteristics and pathogen distribution

A cohort of 118 cervical cancer patients with postopera-
tive infections were enrolled, with ages ranging from 24
to 73 years. Among these, 74 patients (62.71%) were
over 50 years of age. The distribution according to the
International Federation of Gynecology and Obstetrics
(FIGO) staging system was as follows: 37 patients were
in stage I, 25 were in stage II, 38 were in stage III, and
18 were in stage IV. Geographically, 42 patients were
from southern Anhui, and 71 were from northern Anhui
(Table 1).

Microbiological analysis identified 151 pathogenic iso-
lates from all the samples. Gram-negative bacilli predo-
minated, comprising 116 strains (76.82%), with E. coli
being the most prevalent pathogen (76 strains, 50.33%).
A total of 29 gram-positive (19.21%) were identified,
primarily Staphylococcus and Enterococcus species,
along with six fungal isolates (3.97%), all belonging to
the Candida genus. Mid-stream urine samples were the
most frequent source of pathogens, accounting for 105
isolates (69.54%), including 61 strains of E. coli. Other
sources included fresh whole blood (15 strains, 9.93%)
and deep sputum (9 strains, 5.96%). Notably, seven
Staphylococcus isolates were recovered from blood
samples, six of which were coagulase-negative species
(Staphylococcus epidermidis and Staphylococcus homi-
nis), underscoring the importance of stringent sampling
protocols to minimize contamination (Table 2).

Antimicrobial resistance profiles of major pathogens
Antimicrobial resistance was assessed for the most fre-
quently isolated gram-negative and gram-positive path-
ogens. E. coli exhibited high resistance to ceftriaxone
and ciprofloxacin (both > 65%), as well as to trimetho-
prim-sulfamethoxazole and levofloxacin (> 55%). In
contrast, resistance rates to nitrofurantoin, imipenem,
piperacillin/tazobactam, and amikacin were less than
10%. Proteus mirabilis showed elevated resistance
(> 50%) to nitrofurantoin, trimethoprim-sulfamethoxa-
zole, and ciprofloxacin. Similarly, Klebsiella pneumo-
niae was highly resistant to trimethoprim-sulfamethox-
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Table 1. Clinical characteristics of cervical cancer patients with bacterial infections.

Clinical characteristics Number (n = 118) Proportion (%)
<50 44 37.29
> 50 74 62.71
FIGO stage
I 37 31.36
II 25 21.19
11 38 32.20
v 18 15.25
Place of residence
Northern Anhui region 42 35.59
Southern Anhui region 71 60.17
Others 5 4.24

In the staging category, ""Other" represents cases with no definitive staging. In the place of residence category, "Other" represents patients not

from Anhui Province.

azole, ciprofloxacin, and ceftriaxone. No resistance to
carbapenems, piperacillin/tazobactam, cefepime, or am-
ikacin was detected in the latter two species. Among
gram-positive bacteria, Enterococcus faecalis exhibited
high resistance (> 65%) to quinupristin/dalfopristin, tet-
racycline, and erythromycin. Staphylococcus aureus
presented the highest resistance rate to penicillin,
whereas Staphylococcus hominis was frequently re-
sistant to penicillin and erythromycin. All gram-positive
cocci remained fully susceptible to vancomycin, line-
zolid, and tigecycline (Tables 3 and 4).

Development and validation of the prediction model
using all sample types

In the primary analysis encompassing all sample types,
cultures positive for E. coli were designated as the posi-
tive cohort, with samples containing other pathogens
constituted the negative cohort for subsequent bioinfor-
matic investigation. Univariate logistic regression re-
vealed significant positive associations between E. coli
infection and earlier clinical stage (p = 0.008) and mid-
stream urine sample type (p = 0.012), and negative cor-
relations with anemia-related indicators (RBC: p =
0.087; Hb: p = 0.083; Figure 1A). No statistically signi-
ficant differences were observed in hepatic (ALT: p =
0.911, AST: p = 0.475) or renal function (CREA: p =
0.507, BUN: p = 0.962) parameters between the com-
pared groups, indicating that impaired liver or kidney
function is unlikely to constitute a primary risk factor
for E. coli infection. Decision tree-based feature selec-
tion highlighted blood WBC and clinical stage as key
predictors (Figure 1B). Consequently, disease stage,
RBC, WBC, Hb, and sample type were used for predic-
tive modeling. Pearson’s correlation analysis confirmed
the absence of multicollinearity (all coefficients < 0.5;
Figure 1C).

Eleven machine learning algorithms were evaluated.
The naive bayes, logistic, and svm cross models
showed relatively stable performance, whereas the other
models indicated potential overfitting (Figure 2A and
2B). However, the discriminatory capacity was limited,
with all the AUC values being less than 0.75. Subse-
quent feature combination analyses did not yield im-
provements, with no model achieving an AUC above
0.7 (Figure 2C and 2D). These results indicate that con-
siderable optimization is essential for translating the
preliminary potential of these models into reliable per-
formance.

Development and validation of a prediction model
using mid-stream urine samples

For the focused analysis of midstream urine samples,
we employed a consistent case definition, designating
E. coli-positive cultures as the case group and those
containing other pathogens as the control group for sub-
sequent bioinformatic investigation. Univariate logistic
regression confirmed significant positive associations
between E. coli infection and earlier clinical stage (p =
0.001) and positive urinary nitrite (p = 0.013), and neg-
ative correlations with anemia indicators (RBC: p =
0.018; Hb: p = 0.093; Figure 3A). No statistically signi-
ficant differences were observed in hepatic (ALT: p =
0.726, AST: p = 0.942) or renal function (CREA: p =
0.214, BUN: p = 0.969) parameters between the com-
pared groups, indicating that impaired liver or kidney
function is unlikely to constitute a primary risk factor
for E. coli infection. Decision tree feature selection
identified blood WBC and urine WBC as important var-
iables (Figure 3B), and LASSO regression further re-
vealed significant differences in urine WBC, clinical
stages, urinary nitrite, blood RBC, AST, and SCC levels
(Figure 3C). Based on the above results, these variables,
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Table 2. The distribution characteristics of postoperative pathogenic bacterial infections in cervical cancer patients.

Number of Strains (n) .
Pathogens - - Total Proportion
sputum | blood | urine purulfent vagm.al dralqage others | stool (n=151) (%)
secretion secretion fluid
Gram-negative bacilli
E. coli 1 5 61 1 1 4 3 0 76 50.33
Proteus mirabilis 0 0 10 0 1 1 1 0 13 8.61
Klebsiella 1 0 7 0 1 0 0 0 9 5.96
pneumoniae
Acinetobacter 2 0 3 0 0 0 0 0 5 331
baumannii
Pseudomonas 2 2 0 0 0 0 0 0 4 2.65
aeruginosa
Citrobacter spp 0 0 0 1 0 1 0 0 2 1.32
Serratia spp 0 1 1 0 0 0 0 0 2 1.32
il 0 0 2 0 0 0 0 0 2 132
oxytoca
Other 1 0 2 0 0 0 0 0 3 1.99
Total 7 8 86 2 3 6 4 0 116 76.82
Gram-positive cocci
Enterococcus 0 0 4 2 0 0 0 0 6 3.97
faecalis
R e 0 1 3 0 0 1 0 0 5 331
aureus
Staphylococcus 0 5 0 0 0 0 0 0 5 331
hominis
Enterococcus 0 0 3 0 0 0 0 0 3 1.99
faecium
e 0 0 2 0 1 0 0 0 3 1.99
vaginalis
R LR 0 1 1 0 0 1 0 0 3 1.99
agalactiae
Staphylococcus 0 1 0 0 0 0 0 0 1 0.66
epidermidis
Other 0 1 2 0 0 0 0 0 3 1.99
Total 0 9 15 2 1 2 0 0 29 19.21
Fungi
(LI 1 0 1 0 0 0 0 1 3 1.99
glabrata
Candida 0 0 1 1 0 0 0 0 2 1.32
tropicalis
Candida 1 0 0 0 0 0 0 0 1 0.66
albicans
Total 2 0 2 1 0 0 0 1 6 3.97
R e 9 15 | 105 5 4 8 4 1 151
count (n)
Specimen 5.96 9.93 | 69.54 3.31 2.65 5.30 265 | 0.66 100
proportion (%)
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Table 3. Drug resistance in major gram-negative bacilli to commonly antimicrobial agents.

E. coli Proteus mirabilis Kiebsiella pneumoniae
Antimicrobial (n =76) mn=13) n=9)

Saens Number (n) ersti:t(zlzse Number (n) Rreasti:t(i;‘lse Number (n) lt_eastist(z:;);e
Ceftazidime 25 32.89 1 7.69 1 11.11
f;‘;g;icc‘tl;‘;/ 4 5.26 0 0.00 0 0.00
Tobramycin 14 18.42 2 15.38 0 0.00
Aztreonam 37 48.68 0 0.00 1 11.11
Ceftriaxone 53 69.74 6 46.15 4 44.44

Cefepime 14 18.42 0 0.00 0 0.00
Gentamicin 31 40.79 2 15.38 2 22.22
Imipenem 1 1.32 0 0.00 0 0.00
Ertapenem 1 1.32 0 0.00 0 0.00
Amikacin 7 9.21 0 0.00 0 0.00
Ciprofloxacin 50 65.79 7 53.85 4 44.44
Levofloxacin 42 55.26 3 23.08 2 2029003
(methoprim 45 59.21 10 76.92 4 44.44
Nitrofurantoin 2 2.63 12 92.31 2 22.22

Table 4. Drug resistance in major gram-positive cocci to commonly antimicrobial agents.

Enterococcus faecalis Staphylococcus aureus Staphylococcus hominis
Antimicrobial (n =6) (n=5) (m=5)
aeens Number () | REWENE | Number @) | REWENE | Number @ | Revstce
Penicillin 0 0.00 5 100.00 5 100.00
Ampicillin 0 0.00 NA NA NA NA
Oxacillin NA NA 2 40.00 3 60.00
Vancomycin 0 0.00 0 0.00 0 0.00
Erythromycin 4 66.67 2 40.00 4 80.00
Tetracycline 5 83.33 1 20.00 0 0.00
Ciprofloxacin 0 0.00 1 20.00 1 20.00
Levofloxacin 1 16.67 1 20.00 1 20.00
Nitrofurantoin 1 16.67 0 0.00 0 0.00
%‘:l‘;‘)‘r‘)’:ii::ii:/ 5 83.33 0 0.00 0 0.00
Linezolid 0 0.00 0 0.00 0 0.00
Tigecycline 0 0.00 0 0.00 0 0.00

NA indicates that antibiotic susceptibility testing was not performed for the specified pathogen against the relevant antibiotic.

including clinical stage, RBC, WBC, U _WBCI, Hb and mance and stability. The logistic model achieved AUCs
U _nitrite, were selected for subsequent modeling. of 0.87 (training) and 0.90 (test), with corresponding
Among the machine learning algorithms evaluated, the sensitivities of 0.85 and 0.83, specificities of 0.79 and
logistic and svm_cross models exhibited robust perfor- 0.92, positive predictive values of 0.86 and 0.94, and
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Figure 1. Associations between E. coli infections and clinicopathological characteristics in all sample types.

A Univariate logistic regression evaluating the associations between E. coli infection and clinical variables. B Feature importance for pre-
dicting E. coli infection derived from decision tree analysis. C Correlation heatmap of predictor variables based on Pearson’s coefficients.
L lymphocyte count, N neutrophil count, L% lymphocyte percentage, N% neutrophil percentage, N/L neutrophil-to-lymphocyte ratio.

negative predictive values of 0.78 and 0.80, respective-
ly. The svm_cross model yielded AUCs of 0.81 (train-
ing) and 0.89 (test), with sensitivities of 0.85 and 0.78,
specificities of 0.89 and 0.77, positive predictive values
of 0.92 and 0.82, and negative predictive values of 0.81
and 0.71, respectively (Figure 4A and 4B). Both models
maintained strong discriminatory power across the
training and test sets, indicating good generalizability.
No significant multicollinearity was detected (Figure
4C). A nomogram was developed to facilitate clinical
risk estimation for E. coli infection (Figure 4D).

DISCUSSION

This retrospective study characterized the clinical and
microbiological profiles of nosocomial infections in cer-
vical cancer patients, with a specific focus on epidemi-
ological patterns and antimicrobial resistance. Our find-
ings indicate that infections are caused primarily by
gram-negative bacteria of urinary tract origin, with E.
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coli being the most predominant pathogen. Notably, E.
coli exhibits high resistance rates to multiple first-line
antibiotics. Using machine learning approaches, we de-
veloped a prediction model for E. coli infection on the
basis of mid-stream urine samples, which demonstrated
strong discriminatory capacity (AUC > 0.8) and exhib-
its promising potential for clinical translation. This
work provides both a theoretical basis and a practical
tool for detection and precision management of nosoco-
mial infections in culture-positive population.

Consistent with previous studies in solid tumor cohorts
[10,11], gram-negative bacilli accounted for the majori-
ty of pathogens, with E. coli represented more than 50%
of all isolates and was the most frequently recovered
pathogen from mid-stream urine samples. The notion
that the urinary tract is the predominant site of nosoco-
mial infection in cervical cancer patients, is likely be-
cause of surgical intervention, indwelling catheter use,
and impaired bladder function [3]. Antimicrobial sus-
ceptibility testing revealed resistance rates exceeding
55% to commonly prescribed agents including ceftriax-
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Figure 2. Development and validation of a machine learning model predicting E. coli infection using all sample types.

A, B ROC curves of the prediction model in the training and test sets. The predictors included the clinical stage, RBC, WBC, hemoglobin, and
sample type. C ROC analysis of the naive_bayes, logistic, and svm_cross models constructed from all possible combinations of four out of the
five predictors. D ROC analysis of the naive_bayes, logistic, and svm_cross models built from all combinations of the three predictors.

one and ciprofloxacin, underscoring the need for cau- combinations, and amikacin was high, which is consis-
tion in empirical antibiotic selection. Conversely, the ef- tent with current national and international surveillance
ficacy of carbapenems, B-lactam/B-lactamase inhibitor data [12]. These findings highlight the importance of
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A Univariate Logistic Regression Analysis
(Outcome: Escherichia coli)

Variable OR (95% Cl) p-value
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Bacteria 1.00 (1.00 - 1.00) 0.423
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AST f—— —— 1.07 (0.17 - 6.81)  0.942
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Figure 3. Relationship between E. coli infection and patient characteristics in mid-stream urine samples.

A Univariate logistic regression analysis of clinical factors associated with E. coli infection in mid-stream urine samples. B Decision tree-based
feature importance ranking for E. coli infection prediction. C Feature selection via LASSO regression.

L lymphocyte count, N neutrophil count, L% lymphocyte percentage, N% neutrophil percentage, N/L neutrophil-to-lymphocyte ratio.

U_OB urine occult blood, U_PRO urine protein, U WBC urine WBC count, U_ WBC1 urine qualitative urine WBC, U_nitrite urine nitrite.

susceptibility-guided therapy to minimize broad-spec-
trum antibiotic misuse and curb the emergence of resis-
tant strains.

Univariate logistic regression analysis revealed several
factors significantly associated with E. coli infection,
including earlier clinical stage, absence of anemia, mid-
stream urine specimen type, and positive urinary nitrite
status. In contrast, no significant correlations were ob-
served with comorbid hepatic or renal dysfunction or
with Lpa levels. Subsequent application of decision tree
and LASSO regression methods enabled the selection of
robust, non-redundant predictors, culminating in the
identification of core features associated with E. coli in-
fection. A notable observation was the reduced likeli-
hood of E. coli infection in patients with advanced-stage
anemia. We propose that this may reflect differences in
treatment modalities across disease stages. Patients with
advanced cancer typically undergo more radiotherapy
and chemotherapy and fewer surgical procedures, there-
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by reducing exposure to invasive urinary interventions
such as catheterization and consequent introduction of
enteric pathogens such as E. coli [10]. Moreover, ane-
mia in this subgroup is often related to chronic disease
or myelosuppressive therapy, and these patients may
benefit from more intensive clinical monitoring and em-
pirical antibiotic coverage, potentially preventing some
infections [13-15]. The overall immunocompromised
state of advanced-stage patients may also predispose
them to opportunistic or polymicrobial infections rather
than monomicrobial E. coli events [16,17], possibly ex-
plaining the inverse correlation observed in our model.
For predictive modeling, we constructed E. coli infec-
tion models using both all sample types and only mid-
stream urine samples. While algorithms such as logistic
regression and support vector machines with cross-vali-
dation showed stable performance in the full sample
model, their discriminative ability was limited (AUC <
0.75), likely owing to sample heterogeneity and unmea-
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Figure 4. Performance evaluation of the machine learning prediction model for E. coli infection using mid-stream urine sam-

ples.

A, B ROC curve analysis demonstrating model performance in the training and test sets. The predictors included clinical stage, RBC, WBC,
U_WBC1, Hb and U_nitrite. C Correlation matrix of predictor variables based on Pearson’s analysis. D Clinically applicable nomogram for

individualized prediction of E. coli infection risk.

sured confounders. Restricting the analysis to mid-
stream urine samples substantially improved model per-
formance, with the logistic and svm-cross models
achieving AUCs of 0.90 and 0.89, respectively, in the
test set. This underscores the value of sample homoge-
neity in enhancing predictive accuracy. The nomogram
developed herein further augments the clinical utility
and interpretability of the findings [18,19]. Recently,
machine learning has gained traction in the prediction of
pathogenic infections [20,21]. Prior research has em-
ployed diverse data types, from clinical and laboratory
features to multiomics genomics data, to construct mod-
els for predicting infections, profiling antibiotic resis-
tance, and screening novel therapeutics [22]. For exam-
ple, Sassi et al. combined genome-wide association
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studies (GWASs), machine learning, and transcripto-
mics to predict Staphylococcus aureus infections [23].
Similarly, Ardila et al. leveraged whole-genome se-
quencing with machine learning to predict antimicrobial
resistance in critical pathogens [24], and Lane et al.
compared machine learning models for drug discovery
against Mycobacterium tuberculosis [25]. Future work
should prioritize the integration of multisource and mul-
timodal data to enhance the predictive accuracy for bac-
terial infections and extend the applications of machine
learning to elucidate resistance mechanisms and assess
virulence.

Several limitations should be acknowledged. First, as a
single-center retrospective study with a limited sample
size, the potential for selection bias cannot be excluded.
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Second, enhancing the model's accuracy and credibility
requires the incorporation of diverse clinical features
and parameters, such as inflammatory cytokines or mi-
crobial genomic features. Patient selection must be
guided by stricter, evidence-based criteria to accurately
discriminate true infections. Third, the adoption of prin-
cipled approaches for handling missing data is needed
to strengthen future models by minimizing bias while
maintaining data completeness. Furthermore, our mod-
els face potential limitations from temporal bias and
overfitting. Future studies should involve multicenter
collaborations to increase the sample size, incorporate
prospective validation cohorts, refine risk stratification,
and integrate metagenomic sequencing and host im-
mune parameters to develop more accurate and general-
izable predictive tools.

In conclusion, this study delineates the pathogen distri-
bution and resistance patterns of nosocomial infections
in cervical cancer patients and presents a machine learn-
ing-based prediction model for E. coli infection using
readily available clinical variables. The model exhibited
excellent performance, particularly when applied to
mid-stream urine samples, with strong calibration and
discrimination. These findings suggest that the predic-
tion model represents a promising tool for supporting
risk stratification, guiding targeted interventions, and
optimizing antibiotic therapy among culture-positive
patients, with the ultimate goal of improving patient
outcomes.
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