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SUMMARY 

 

Background: This study aimed to characterize the etiological profile of nosocomial infections in cervical cancer pa-

tients and to develop a machine learning-based prediction model for infections caused by the predominant patho-

gen, Escherichia coli, to support clinical decision-making in anti-infective therapy and risk stratification. 

Methods: We conducted a retrospective analysis of clinical data from 118 cervical cancer patients to evaluate the 

distribution and antimicrobial resistance patterns of infectious pathogens. Predictive factors for Escherichia coli 

infection were identified, and a corresponding prediction model was developed. All the statistical analyses were 

carried out via R software (version 4.3.2) and iResearch (version 2.9.2). 

Results: A total of 151 pathogenic isolates were obtained, with the highest prevalence detected in mid-stream urine 

samples (69.54%, 105/151). Gram-negative bacteria constituted 76.82% (116/151) of the isolates, among which 

Escherichia coli was the most frequently identified species (50.33%, 76/151). Antimicrobial susceptibility testing 

revealed resistance rates exceeding 55% to ceftriaxone, ciprofloxacin, trimethoprim-sulfamethoxazole, and levo-

floxacin among Escherichia coli isolates, whereas high susceptibility was retained to carbapenems, piperacillin-ta-

zobactam, and amikacin. Logistic regression analysis revealed that Escherichia coli infection was positively associ-

ated with earlier clinical stage, absence of anemia, and mid-stream urine sample type. Within the urinary infec-

tion subgroup, positive urinary nitrite was also correlated with increased infection risk. Feature selection utilizing 

multiple approaches informed the construction of the prediction model.  

Logistic regression and svm_cross_validation exhibited stable performance in the full sample analysis. Restricting 

the analysis to mid-stream urine samples substantially improved model performance. The svm-based model 

yielded AUC values of 0.81 and 0.89 in the training and test sets, respectively, and the logistic model achieved 

AUCs of 0.87 and 0.90, respectively. 

Conclusions: Nosocomial infections in cervical cancer patients are caused primarily by gram-negative bacilli with-

in the urinary tract, with Escherichia coli representing the most prevalent pathogen. The machine learning model, 

which incorporates readily available clinical parameters such as disease stage, anemia status, and urinalysis re-

sults, demonstrated robust discriminatory performance in predicting Escherichia coli infection in mid-stream 

urine samples. This tool offers a practical approach for risk identification and guides a more targeted empiric 

therapy, holding promise for improving treatment outcomes in patients with cervical cancer. 

(Clin. Lab. 2026;72:xx-xx. DOI: 10.7754/Clin.Lab.2025.250926) 
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INTRODUCTION 

 

Cervical cancer represents one of the most prevalent 

malignancies affecting women globally [1,2]. Treat-

ments such as surgery, radiotherapy, and chemotherapy 

frequently result in immunosuppression, significantly 

increasing the risk of nosocomial infections among 

these patients [1,3]. These infections can lead to pro-

longed hospitalization, elevated healthcare costs, and 

potentially life-threatening complications including sep-

sis, thereby adversely affecting clinical outcomes. The 

growing prevalence of antimicrobial resistance driven in 

part by inappropriate antibiotic use has further compli-

cated treatment strategies, with notably high resistance 

rates to fluoroquinolones and third-generation cephalo-

sporins increasingly reported [4,5]. 

Current detection approaches for infections in cervical 

cancer patients rely heavily on microbial culture and 

antibiotic susceptibility testing. However, these meth-

ods are time intensive and offer limited utility for early 

clinical intervention [6,7]. Although conventional bio-

markers such as procalcitonin and C-reactive protein are 

widely used, they lack specificity for pathogenic organ-

isms, reducing their diagnostic precision. Furthermore, 

traditional statistical models often prove inadequate 

when applied to complex, multidimensional clinical 

data. 

Machine learning algorithms have emerged as powerful 

tools in predictive healthcare, demonstrating consider-

able success in the early detection of conditions such as 

sepsis and ventilator-associated pneumonia [8,9]. De-

spite these advances, the application of such techniques 

to predict infections specifically in cervical cancer pa-

tients remains limited. Consequently, a thorough in-

vestigation of pathogen distribution and resistance pat-

terns, complemented by the development of machine 

learning models capable of integrating diverse clinical 

variables, is essential to facilitate early diagnosis and 

promote rational antimicrobial use, ultimately improv-

ing patient care and survival. 

In this study, we retrospectively analyzed clinical and 

microbiological data from cervical cancer patients to 

delineate the profiles and resistance characteristics of 

pathogenic infections. Using machine learning algo-

rithms, including logistic regression and support vector 

machine (svm), we developed a predictive model for 

Escherichia coli (E. coli) infections that exhibited 

strong discriminatory power, with the logistic regres-

sion model achieving an area under the receiver operat-

ing characteristic curve (AUC) of 0.90 in the test set. By 

innovatively leveraging machine learning for the predic-

tion of E. coli infections among culture-positive cases, 

this work establishes a framework for personalized in-

fection management and targeted antibiotic therapy, 

with the potential to enhance treatment efficacy. 

 

 

MATERIALS AND METHODS 

 

Study setting and population 

This retrospective cohort study was conducted at the 

West District of the First Affiliated Hospital of Univer-

sity of Science and Technology of China (Anhui Pro-

vincial Cancer Hospital), the only tertiary-care special-

ized cancer hospital in Anhui Province. The facility 

maintains 1,696 inpatient beds and 29 clinical subspe-

cialties. Its gynecologic oncology unit is a provin-

cial-level key specialty, serving a broad regional popu-

lation, which ensures sufficient patient enrollment. A 

structured infection control program is implemented 

hospital-wide, with prospective audits and feedback 

from clinicians and pharmacists providing timely in-

sight into local pathogen distribution and antimicrobial 

resistance patterns, thereby promoting rational antimi-

crobial use. 

This study included consecutive 118 hospitalized cervi-

cal cancer patients with positive microbial cultures. For 

urine cultures, a urinary tract infection was diagnosed in 

cases with colony counts meeting the threshold of > 105 

CFU/mL for gram-negative bacilli, > 104 CFU/mL for 

gram-positive bacteria, or > 104 CFU/mL for fungi from 

a mid-stream urine specimen. In the presence of signifi-

cant pyuria (> 1 + WBC on qualitative urinalysis), a 

bacterial colony count exceeding 103 CFU/mL was also 

considered diagnostic for a urinary tract infection. Poly-

microbial cultures (growth of ≥ 3 potential pathogens) 

were excluded from the predictive modeling analysis to 

ensure a clear outcome label. 

 

Clinical data collection 

Demographic and clinical variables, including age, dis-

ease stage, geographic region, and standardized labora-

tory assessments, were retrospectively collected from 

medical records. These included the biochemical pa-
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rameters glucose (GLU), Lpa, ALT and AST for hepatic 

function, creatinine (CREA) and blood urea nitrogen 

(BUN) for renal function, the tumor biomarker squa-

mous cell carcinoma antigen (SCC), complete blood 

count indices - WBC, lymphocyte (L) and neutrophil 

(N) counts and percentages for infection; RBC and he-

moglobin (Hb) for anemia; platelet (PLT) count for co-

agulation, as well as the qualitative urinalysis measures: 

occult blood (U_OB), protein (U_PRO), white blood 

cell (U_WBC1) and nitrite (U_nitrite), and the quantita-

tive parameters: white blood cell (U_WBC). A rigorous 

data integrity protocol was implemented, featuring dual 

independent extraction and entry followed by cross-ver-

ification by a third investigator. 

 

Pathogen isolation, culture, and antimicrobial sus-

ceptibility  

The test specimen types included deep sputum, fresh 

whole blood, mid-stream urine, purulent secretions, 

vaginal secretions, drainage fluid, and stool. Isolation 

and culture procedures were performed in accordance 

with the National Clinical Laboratory Operating Proce-

dures (4th Edition). Bacterial identification and antimi-

crobial susceptibility testing were conducted via the 

VITEK-2 compact automated microbial analysis system 

(bioMérieux, France). The minimum inhibitory concen-

tration (MIC) dilution method was employed for sus-

ceptibility testing, with results interpreted based on the 

Clinical and Laboratory Standards Institute 2020 guide-

lines (CLSI M100-30). The quality control strains in-

cluded E. coli (ATCC 25922) and Staphylococcus aure-

us (ATCC 25923).  

 

Construction of infection prediction models  

For analyses incorporating all specimen types, predictor 

variables, including specimen type, disease stage, and 

complete blood count parameters (WBC, RBC, and Hb) 

were selected based on logistic univariate regression re-

sults (p < 0.1) and decision tree outcomes. For analyses 

restricted to mid-stream urine specimens, variables were 

selected via logistic univariate regression (p < 0.1), de-

cision tree, and least absolute shrinkage and selection 

operator (LASSO), encompassing disease stage, com-

plete blood count parameters (WBC, RBC, Hb), and 

urinalysis indicators (WBC and nitrite). All above ana-

lyses were performed via R software (version 4.3.2). 

We employed the forest plot package for regression 

analysis and the glmnet package for feature selection via 

LASSO regression. Model performance was evaluated 

by generating receiver ROC curves using the pROC 

package. All data visualizations were created with 

ggplot2. The following machine learning algorithms 

analyzed by iResearch (version 2.9.2) were applied to 

evaluate their utility in infection prediction: Naive 

Bayes classifier, K-nearest neighbors (KNN) classifier, 

Logistic regression classifier, Random forest classifier, 

Decision tree classifier, Artificial neural network 

(ANN) classifier, Support vector machine with cross-

validation (svm_cross_validation), Gradient boosting 

classifier (ensemble learning), LightGBM, Adaptive 

boosting (AdaBoost) classifier and XGBoost classifier. 

 

Statistical analysis  

Data processing and statistical analyses were conducted 

using R version 4.3.2 and iResearch (version 2.9.2). 

Continuous variables are expressed as the mean ± stan-

dard deviation (x ± s), and categorical variables are ex-

pressed as frequencies (%). Univariate logistic regres-

sion was used to assess associations between clinical 

characteristics/laboratory indicators and pathogenic in-

fections. Variables with p < 0.1 were included in model 

construction, and p < 0.05 was considered statistically 

significant. 

 

 

RESULTS 

 

Clinical characteristics and pathogen distribution 

A cohort of 118 cervical cancer patients with postopera-

tive infections were enrolled, with ages ranging from 24 

to 73 years. Among these, 74 patients (62.71%) were 

over 50 years of age. The distribution according to the 

International Federation of Gynecology and Obstetrics 

(FIGO) staging system was as follows: 37 patients were 

in stage I, 25 were in stage II, 38 were in stage III, and 

18 were in stage IV. Geographically, 42 patients were 

from southern Anhui, and 71 were from northern Anhui 

(Table 1). 

Microbiological analysis identified 151 pathogenic iso-

lates from all the samples. Gram-negative bacilli predo-

minated, comprising 116 strains (76.82%), with E. coli 

being the most prevalent pathogen (76 strains, 50.33%). 

A total of 29 gram-positive (19.21%) were identified, 

primarily Staphylococcus and Enterococcus species, 

along with six fungal isolates (3.97%), all belonging to 

the Candida genus. Mid-stream urine samples were the 

most frequent source of pathogens, accounting for 105 

isolates (69.54%), including 61 strains of E. coli. Other 

sources included fresh whole blood (15 strains, 9.93%) 

and deep sputum (9 strains, 5.96%). Notably, seven 

Staphylococcus isolates were recovered from blood 

samples, six of which were coagulase-negative species 

(Staphylococcus epidermidis and Staphylococcus homi-

nis), underscoring the importance of stringent sampling 

protocols to minimize contamination (Table 2). 

 

Antimicrobial resistance profiles of major pathogens 

Antimicrobial resistance was assessed for the most fre-

quently isolated gram-negative and gram-positive path-

ogens. E. coli exhibited high resistance to ceftriaxone 

and ciprofloxacin (both > 65%), as well as to trimetho-

prim-sulfamethoxazole and levofloxacin (> 55%). In 

contrast, resistance rates to nitrofurantoin, imipenem, 

piperacillin/tazobactam, and amikacin were less than 

10%. Proteus mirabilis showed elevated resistance      

(> 50%) to nitrofurantoin, trimethoprim-sulfamethoxa-

zole, and ciprofloxacin. Similarly, Klebsiella pneumo-

niae was highly resistant to trimethoprim-sulfamethox-
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Table 1. Clinical characteristics of cervical cancer patients with bacterial infections. 

 

Clinical characteristics Number (n = 118) Proportion (%) 

Age 

≤ 50 44 37.29 

> 50 74 62.71 

FIGO stage 

I 37 31.36 

II 25 21.19 

III 38 32.20 

IV 18 15.25 

Place of residence 

Northern Anhui region 42 35.59 

Southern Anhui region 71 60.17 

Others 5 4.24 

 

In the staging category, "Other" represents cases with no definitive staging. In the place of residence category, "Other" represents patients not 

from Anhui Province. 

 

 

 

azole, ciprofloxacin, and ceftriaxone. No resistance to 

carbapenems, piperacillin/tazobactam, cefepime, or am-

ikacin was detected in the latter two species. Among 

gram-positive bacteria, Enterococcus faecalis exhibited 

high resistance (> 65%) to quinupristin/dalfopristin, tet-

racycline, and erythromycin. Staphylococcus aureus 

presented the highest resistance rate to penicillin, 

whereas Staphylococcus hominis was frequently re-

sistant to penicillin and erythromycin. All gram-positive 

cocci remained fully susceptible to vancomycin, line-

zolid, and tigecycline (Tables 3 and 4). 

 

Development and validation of the prediction model 

using all sample types 

In the primary analysis encompassing all sample types, 

cultures positive for E. coli were designated as the posi-

tive cohort, with samples containing other pathogens 

constituted the negative cohort for subsequent bioinfor-

matic investigation. Univariate logistic regression re-

vealed significant positive associations between E. coli 

infection and earlier clinical stage (p = 0.008) and mid-

stream urine sample type (p = 0.012), and negative cor-

relations with anemia-related indicators (RBC: p = 

0.087; Hb: p = 0.083; Figure 1A). No statistically signi-

ficant differences were observed in hepatic (ALT: p = 

0.911, AST: p = 0.475) or renal function (CREA: p = 

0.507, BUN: p = 0.962) parameters between the com-

pared groups, indicating that impaired liver or kidney 

function is unlikely to constitute a primary risk factor 

for E. coli infection. Decision tree-based feature selec-

tion highlighted blood WBC and clinical stage as key 

predictors (Figure 1B). Consequently, disease stage, 

RBC, WBC, Hb, and sample type were used for predic-

tive modeling. Pearson’s correlation analysis confirmed 

the absence of multicollinearity (all coefficients < 0.5; 

Figure 1C). 

Eleven machine learning algorithms were evaluated. 

The naive_bayes, logistic, and svm_cross models 

showed relatively stable performance, whereas the other 

models indicated potential overfitting (Figure 2A and 

2B). However, the discriminatory capacity was limited, 

with all the AUC values being less than 0.75. Subse-

quent feature combination analyses did not yield im-

provements, with no model achieving an AUC above 

0.7 (Figure 2C and 2D). These results indicate that con-

siderable optimization is essential for translating the 

preliminary potential of these models into reliable per-

formance. 

 

Development and validation of a prediction model 

using mid-stream urine samples 

For the focused analysis of midstream urine samples, 

we employed a consistent case definition, designating 

E. coli-positive cultures as the case group and those 

containing other pathogens as the control group for sub-

sequent bioinformatic investigation. Univariate logistic 

regression confirmed significant positive associations 

between E. coli infection and earlier clinical stage (p = 

0.001) and positive urinary nitrite (p = 0.013), and neg-

ative correlations with anemia indicators (RBC: p = 

0.018; Hb: p = 0.093; Figure 3A). No statistically signi-

ficant differences were observed in hepatic (ALT: p = 

0.726, AST: p = 0.942) or renal function (CREA: p = 

0.214, BUN: p = 0.969) parameters between the com-

pared groups, indicating that impaired liver or kidney 

function is unlikely to constitute a primary risk factor 

for E. coli infection. Decision tree feature selection 

identified blood WBC and urine WBC as important var-

iables (Figure 3B), and LASSO regression further re-

vealed significant differences in urine WBC, clinical 

stages, urinary nitrite, blood RBC, AST, and SCC levels 

(Figure 3C). Based on the above results, these variables, 
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Table 2. The distribution characteristics of postoperative pathogenic bacterial infections in cervical cancer patients. 

 

Pathogens 

Number of Strains (n) 
Total  

(n = 151) 

Proportion 

(%) sputum blood urine 
purulent 

secretion 

vaginal 

secretion 

drainage 

fluid 
others stool 

Gram-negative bacilli 

E. coli 1 5 61 1 1 4 3 0 76 50.33 

Proteus mirabilis 0 0 10 0 1 1 1 0 13 8.61 

Klebsiella 

pneumoniae 
1 0 7 0 1 0 0 0 9 5.96 

Acinetobacter 

baumannii 
2 0 3 0 0 0 0 0 5 3.31 

Pseudomonas 

aeruginosa 
2 2 0 0 0 0 0 0 4 2.65 

Citrobacter spp 0 0 0 1 0 1 0 0 2 1.32 

Serratia spp 0 1 1 0 0 0 0 0 2 1.32 

Klebsiella 

oxytoca 
0 0 2 0 0 0 0 0 2 1.32 

Other 1 0 2 0 0 0 0 0 3 1.99 

Total 7 8 86 2 3 6 4 0 116 76.82 

Gram-positive cocci 

Enterococcus 

faecalis 
0 0 4 2 0 0 0 0 6 3.97 

Staphylococcus 

aureus 
0 1 3 0 0 1 0 0 5 3.31 

Staphylococcus 

hominis 
0 5 0 0 0 0 0 0 5 3.31 

Enterococcus 

faecium 
0 0 3 0 0 0 0 0 3 1.99 

Gardnerella 

vaginalis 
0 0 2 0 1 0 0 0 3 1.99 

Streptococcus 

agalactiae 
0 1 1 0 0 1 0 0 3 1.99 

Staphylococcus 

epidermidis 
0 1 0 0 0 0 0 0 1 0.66 

Other 0 1 2 0 0 0 0 0 3 1.99 

Total 0 9 15 2 1 2 0 0 29 19.21 

Fungi 

Candida 

glabrata 
1 0 1 0 0 0 0 1 3 1.99 

Candida 

tropicalis 
0 0 1 1 0 0 0 0 2 1.32 

Candida 

albicans 
1 0 0 0 0 0 0 0 1 0.66 

Total 2 0 2 1 0 0 0 1 6 3.97 

Total specimen 

count (n) 
9 15 105 5 4 8 4 1 151  

Specimen 

proportion (%) 
5.96 9.93 69.54 3.31 2.65 5.30 2.65 0.66  100 
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Table 3. Drug resistance in major gram-negative bacilli to commonly antimicrobial agents. 

 

Antimicrobial  

agents 

E. coli  

(n = 76) 

Proteus mirabilis  

(n = 13) 

Klebsiella pneumoniae  

(n = 9) 

Number (n) 
Resistance  

rate (%) 
Number (n) 

Resistance  

rate (%) 
Number (n) 

Resistance  

rate (%) 

Ceftazidime 25 32.89 1 7.69 1 11.11 

Piperacillin/ 

tazobactam 
4 5.26 0 0.00 0 0.00 

Tobramycin 14 18.42 2 15.38 0 0.00 

Aztreonam 37 48.68 0 0.00 1 11.11 

Ceftriaxone 53 69.74 6 46.15 4 44.44 

Cefepime 14 18.42 0 0.00 0 0.00 

Gentamicin 31 40.79 2 15.38 2 22.22 

Imipenem 1 1.32 0 0.00 0 0.00 

Ertapenem 1 1.32 0 0.00 0 0.00 

Amikacin 7 9.21 0 0.00 0 0.00 

Ciprofloxacin 50 65.79 7 53.85 4 44.44 

Levofloxacin 42 55.26 3 23.08 2 22.22 

Trimethoprim/ 

sulfamethoxazole 
45 59.21 10 76.92 4 44.44 

Nitrofurantoin 2 2.63 12 92.31 2 22.22 

 

 

 

 
Table 4. Drug resistance in major gram-positive cocci to commonly antimicrobial agents. 

 

Antimicrobial  

agents 

Enterococcus faecalis  

(n = 6) 

Staphylococcus aureus  

(n = 5) 

Staphylococcus hominis  

(n = 5) 

Number (n) 
Resistance  

rate (%) 
Number (n) 

Resistance  

rate (%) 
Number (n) 

Resistance  

rate (%) 

Penicillin 0 0.00 5 100.00 5 100.00 

Ampicillin 0 0.00 NA NA NA NA 

Oxacillin NA NA 2 40.00 3 60.00 

Vancomycin 0 0.00 0 0.00 0 0.00 

Erythromycin 4 66.67 2 40.00 4 80.00 

Tetracycline 5 83.33 1 20.00 0 0.00 

Ciprofloxacin 0 0.00 1 20.00 1 20.00 

Levofloxacin 1 16.67 1 20.00 1 20.00 

Nitrofurantoin 1 16.67 0 0.00 0 0.00 

Quinupristin/ 

dalfopristin 
5 83.33 0 0.00 0 0.00 

Linezolid 0 0.00 0 0.00 0 0.00 

Tigecycline 0 0.00 0 0.00 0 0.00 

 

NA indicates that antibiotic susceptibility testing was not performed for the specified pathogen against the relevant antibiotic. 

 

 

 

including clinical stage, RBC, WBC, U_WBC1, Hb and 

U_nitrite, were selected for subsequent modeling. 

Among the machine learning algorithms evaluated, the 

logistic and svm_cross models exhibited robust perfor-

mance and stability. The logistic model achieved AUCs 

of 0.87 (training) and 0.90 (test), with corresponding 

sensitivities of 0.85 and 0.83, specificities of 0.79 and 

0.92, positive predictive values of 0.86 and 0.94, and 
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Figure 1. Associations between E. coli infections and clinicopathological characteristics in all sample types. 
 

A Univariate logistic regression evaluating the associations between E. coli infection and clinical variables. B Feature importance for pre-

dicting E. coli infection derived from decision tree analysis. C Correlation heatmap of predictor variables based on Pearson’s coefficients.  

L lymphocyte count, N neutrophil count, L% lymphocyte percentage, N% neutrophil percentage, N/L neutrophil-to-lymphocyte ratio. 

 

 

 

 

negative predictive values of 0.78 and 0.80, respective-

ly. The svm_cross model yielded AUCs of 0.81 (train-

ing) and 0.89 (test), with sensitivities of 0.85 and 0.78, 

specificities of 0.89 and 0.77, positive predictive values 

of 0.92 and 0.82, and negative predictive values of 0.81 

and 0.71, respectively (Figure 4A and 4B). Both models 

maintained strong discriminatory power across the 

training and test sets, indicating good generalizability. 

No significant multicollinearity was detected (Figure 

4C). A nomogram was developed to facilitate clinical 

risk estimation for E. coli infection (Figure 4D). 

 

 

DISCUSSION 

 

This retrospective study characterized the clinical and 

microbiological profiles of nosocomial infections in cer-

vical cancer patients, with a specific focus on epidemi-

ological patterns and antimicrobial resistance. Our find-

ings indicate that infections are caused primarily by 

gram-negative bacteria of urinary tract origin, with E. 

coli being the most predominant pathogen. Notably, E. 

coli exhibits high resistance rates to multiple first-line 

antibiotics. Using machine learning approaches, we de-

veloped a prediction model for E. coli infection on the 

basis of mid-stream urine samples, which demonstrated 

strong discriminatory capacity (AUC > 0.8) and exhib-

its promising potential for clinical translation. This 

work provides both a theoretical basis and a practical 

tool for detection and precision management of nosoco-

mial infections in culture-positive population. 

Consistent with previous studies in solid tumor cohorts 

[10,11], gram-negative bacilli accounted for the majori-

ty of pathogens, with E. coli represented more than 50% 

of all isolates and was the most frequently recovered 

pathogen from mid-stream urine samples. The notion 

that the urinary tract is the predominant site of nosoco-

mial infection in cervical cancer patients, is likely be-

cause of surgical intervention, indwelling catheter use, 

and impaired bladder function [3]. Antimicrobial sus-

ceptibility testing revealed resistance rates exceeding 

55% to commonly prescribed agents including ceftriax- 
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Figure 2. Development and validation of a machine learning model predicting E. coli infection using all sample types. 
 

A, B ROC curves of the prediction model in the training and test sets. The predictors included the clinical stage, RBC, WBC, hemoglobin, and 

sample type. C ROC analysis of the naive_bayes, logistic, and svm_cross models constructed from all possible combinations of four out of the 

five predictors. D ROC analysis of the naive_bayes, logistic, and svm_cross models built from all combinations of the three predictors. 

 

 

 

 

 

one and ciprofloxacin, underscoring the need for cau-

tion in empirical antibiotic selection. Conversely, the ef-

ficacy of carbapenems, β-lactam/β-lactamase inhibitor 

combinations, and amikacin was high, which is consis-

tent with current national and international surveillance 

data [12]. These findings highlight the importance of 
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Figure 3. Relationship between E. coli infection and patient characteristics in mid-stream urine samples. 
 

A Univariate logistic regression analysis of clinical factors associated with E. coli infection in mid-stream urine samples. B Decision tree-based 

feature importance ranking for E. coli infection prediction. C Feature selection via LASSO regression.  

L lymphocyte count, N neutrophil count, L% lymphocyte percentage, N% neutrophil percentage, N/L neutrophil-to-lymphocyte ratio.  

U_OB urine occult blood, U_PRO urine protein, U_WBC urine WBC count, U_WBC1 urine qualitative urine WBC, U_nitrite urine nitrite. 

 

 

 

 

susceptibility-guided therapy to minimize broad-spec-

trum antibiotic misuse and curb the emergence of resis-

tant strains. 

Univariate logistic regression analysis revealed several 

factors significantly associated with E. coli infection, 

including earlier clinical stage, absence of anemia, mid-

stream urine specimen type, and positive urinary nitrite 

status. In contrast, no significant correlations were ob-

served with comorbid hepatic or renal dysfunction or 

with Lpa levels. Subsequent application of decision tree 

and LASSO regression methods enabled the selection of 

robust, non-redundant predictors, culminating in the 

identification of core features associated with E. coli in-

fection. A notable observation was the reduced likeli-

hood of E. coli infection in patients with advanced-stage 

anemia. We propose that this may reflect differences in 

treatment modalities across disease stages. Patients with 

advanced cancer typically undergo more radiotherapy 

and chemotherapy and fewer surgical procedures, there-

by reducing exposure to invasive urinary interventions 

such as catheterization and consequent introduction of 

enteric pathogens such as E. coli [10]. Moreover, ane-

mia in this subgroup is often related to chronic disease 

or myelosuppressive therapy, and these patients may 

benefit from more intensive clinical monitoring and em-

pirical antibiotic coverage, potentially preventing some 

infections [13-15]. The overall immunocompromised 

state of advanced-stage patients may also predispose 

them to opportunistic or polymicrobial infections rather 

than monomicrobial E. coli events [16,17], possibly ex-

plaining the inverse correlation observed in our model. 

For predictive modeling, we constructed E. coli infec-

tion models using both all sample types and only mid-

stream urine samples. While algorithms such as logistic 

regression and support vector machines with cross-vali-

dation showed stable performance in the full sample 

model, their discriminative ability was limited (AUC < 

0.75), likely owing to sample heterogeneity and unmea- 
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Figure 4. Performance evaluation of the machine learning prediction model for E. coli infection using mid-stream urine sam-

ples. 
 

A, B ROC curve analysis demonstrating model performance in the training and test sets. The predictors included clinical stage, RBC, WBC, 

U_WBC1, Hb and U_nitrite. C Correlation matrix of predictor variables based on Pearson’s analysis. D Clinically applicable nomogram for 

individualized prediction of E. coli infection risk. 

 

 

 

 

sured confounders. Restricting the analysis to mid-

stream urine samples substantially improved model per-

formance, with the logistic and svm-cross models 

achieving AUCs of 0.90 and 0.89, respectively, in the 

test set. This underscores the value of sample homoge-

neity in enhancing predictive accuracy. The nomogram 

developed herein further augments the clinical utility 

and interpretability of the findings [18,19]. Recently, 

machine learning has gained traction in the prediction of 

pathogenic infections [20,21]. Prior research has em-

ployed diverse data types, from clinical and laboratory 

features to multiomics genomics data, to construct mod-

els for predicting infections, profiling antibiotic resis-

tance, and screening novel therapeutics [22]. For exam-

ple, Sassi et al. combined genome-wide association 

studies (GWASs), machine learning, and transcripto-

mics to predict Staphylococcus aureus infections [23]. 

Similarly, Ardila et al. leveraged whole-genome se-

quencing with machine learning to predict antimicrobial 

resistance in critical pathogens [24], and Lane et al. 

compared machine learning models for drug discovery 

against Mycobacterium tuberculosis [25]. Future work 

should prioritize the integration of multisource and mul-

timodal data to enhance the predictive accuracy for bac-

terial infections and extend the applications of machine 

learning to elucidate resistance mechanisms and assess 

virulence.  

Several limitations should be acknowledged. First, as a 

single-center retrospective study with a limited sample 

size, the potential for selection bias cannot be excluded. 
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Second, enhancing the model's accuracy and credibility 

requires the incorporation of diverse clinical features 

and parameters, such as inflammatory cytokines or mi-

crobial genomic features. Patient selection must be 

guided by stricter, evidence-based criteria to accurately 

discriminate true infections. Third, the adoption of prin-

cipled approaches for handling missing data is needed 

to strengthen future models by minimizing bias while 

maintaining data completeness. Furthermore, our mod-

els face potential limitations from temporal bias and 

overfitting. Future studies should involve multicenter 

collaborations to increase the sample size, incorporate 

prospective validation cohorts, refine risk stratification, 

and integrate metagenomic sequencing and host im-

mune parameters to develop more accurate and general-

izable predictive tools. 

In conclusion, this study delineates the pathogen distri-

bution and resistance patterns of nosocomial infections 

in cervical cancer patients and presents a machine learn-

ing-based prediction model for E. coli infection using 

readily available clinical variables. The model exhibited 

excellent performance, particularly when applied to 

mid-stream urine samples, with strong calibration and 

discrimination. These findings suggest that the predic-

tion model represents a promising tool for supporting 

risk stratification, guiding targeted interventions, and 

optimizing antibiotic therapy among culture-positive 

patients, with the ultimate goal of improving patient 

outcomes. 
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