You have to be registered and logged in for purchasing articles.

Abstract

Molecular Typing of Campylobacter jejuni and Campylobacter coli of Human Strains Isolated in Turkey Over an Eight-Year Period by Mehmet Ilktac, Betigul Ongen

Background: Campylobacter spp. is one of the leading causes of bacterial foodborne infections worldwide. In this study, we aimed to investigate the genetic diversity of 341 Campylobacter strains isolated in Turkey.
Methods: Campylobacter spp. was identified by phenotypical methods and PCR. Species level identification was carried out by the hippurate hydrolysis test and PCR. C. jejuni and C. coli strains were typed by using flaA-RFLP and PFGE.
Results: Of 341 strains, 300 (88%), 37 (10.8%), and four were identified as C. jejuni, C. coli, and non-jejuni/non-coli, respectively. The hippurate hydrolysis test misidentified 12% of 341 strains. The typeabilities of flaA-RFLP and PFGE were 100% for C. coli, whereas those of flaA-RFLP and PFGE for C. jejuni were 99.3% and 99%, respectively. The discriminatory power of the combination of PFGE and flaA-RFLP was determined to be higher than either method alone for both C. jejuni and C. coli. Both of the strains were so diverse that 80% and 64% of C. jejuni and C. coli genotypes included only one strain, respectively. In two patients, Campylobacter strains that were isolated from the first stool samples were C. jejuni where as those isolated from the second samples, collected eight and 20 days after the collection of the first samples, were C. coli. C. jejuni strains that were recovered from two different stool samples of two patients, collected 1 - 2 days apart, were found to be genetically different.
Conclusions: Species identification of Campylobacter strains should be done using molecular methods. Combination of two methods is prerequisite for increasing the accuracy of molecular typing. Mixed or subsequent infection by different Campylobacter species and C. jejuni of different genotypes should not be underestimated.

DOI: 10.7754/Clin.Lab.2019.190613